
 Research Question 
How do we build an end-to-end solution for 

secure stateful Function-as-a-Service 

platform using Trusted Execution 

Environments (TEE)?

Domains: (1) Enhanced security for cloud, 

(2) Execution and storage on the edge
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Open Questions
● How to attest to 

dynamically linked 
binaries?

● How to handle 
Sequencer crashes?

 Secure Concurrency Layer 

● Eventual Consistency + Release 

Consistent Locking

● Safety: Durability guaranteed by writing 

to quorum of DataCapsules.

● Liveness: CDB with Sync Reports.
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Client transitively trusts FaaS manager to attest workers. 

Code + dependencies sent as DataCapsule IDs

Replicated DataCapsule Stack
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Secure Parallel Computation 
in Cloud and/or Edge


