
 Research Question
How do we build an end-to-end solution for

secure stateful Function-as-a-Service

platform using Trusted Execution

Environments (TEE)?

Domains: (1) Enhanced security for cloud,

(2) Execution and storage on the edge

Alex Thomas, Shubham Mishra, Eric Chen, John Kubiatowicz
Paranoid Stateful Lambda

Client FaaS
Manager

PSL
Worker 1

PSL
Worker 2

Global
Data Plane

Prepare Phase

Function State

Bi-directional
AttestationAttest FaaS Manager

Client Secret
Fetch code +
dependencies
from DC

Signing/Encryption Keys

1 1

2
2

3
Function State3

3

1

Key Distribution Phase2

Execution Phase3

Open Questions
● How to attest to

dynamically linked
binaries?

● How to handle
Sequencer crashes?

 Secure Concurrency Layer

● Eventual Consistency + Release

Consistent Locking

● Safety: Durability guaranteed by writing

to quorum of DataCapsules.

● Liveness: CDB with Sync Reports.

W1
W2

CDB
DC1
DC2
DC3

Client
ClientLockserver

AcquireLock

Release

Worker n Worker 2

Key
Distribution

FaaS Manager
Enclave

Worker Certifier

Sequencer
CDB

Lockserver

NAS Cloud
Storage

Shim

Trusted

Secured

Client

Untrusted

Client
Function

libc
openssl

`

Client Function

WebAssembly Runtime

SCL

Worker 1 Enclave

openssllibc
Module Loader

Put/Get

…

load_code/
dlopen

Client transitively trusts FaaS manager to attest workers.

Code + dependencies sent as DataCapsule IDs

Replicated DataCapsule Stack

Properties Cloud-
burst

Faasm CCF PSL

Compute
Security

❌ SFI TEE TEE

Storage
Security

❌ ❌ ✅ ✅
Runtime Python WAMR C++/JS WAVM

Consistency Causal Eventual* RSM Eventual†

Secure
Multicast
Network

* w/ Locking; † w/ RCL

Secure Parallel Computation
in Cloud and/or Edge

